74ALVCH162245

- Wide supply voltage range of 1.2V to 3.6V
- Complies with JEDEC standard no. 8-1A
- CMOS low power consumption
- MULTIBYTETM flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and ground pins for minimum noise and ground bounce
- Direct interface with TTL levels
- Bus hold on all data inputs
- Integrated 30Ω termination resistor

DESCRIPTION

The 74ALVCH162245 is a 16-bit transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions.

The 74ALVCH162245 features two output enable (nOE) inputs for easy cascading and two send/receive (nDIR) inputs for direction control. nOE controls the outputs so that the buses are effectively isolated. This device can be used as two 8-bit transceivers or one 16-bit transceiver.

The 74ALVCH162245 is designed with 30Ω series resistors in both HIGH and LOW output states.

The 74ALVCH162245 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

PIN CONFIGURATION

r			
	1DIR 1	48	1 0 E
	1B0 2	47	1A0
	1B1 3	46	1A1
	GND 4	45	GND
	1B2 5	44	1A2
	1B3 6	43	1A3
	V _{CC1} 7	42	V _{CC2}
	1B4 8	41	1A4
	1B5 9	40	1A5
	GND 10	39	GND
	1B6 11	38	1A6
	1B7 12	37	1A7
	2B0 13	36	2A0
	2B1 14	35	2A1
	GND 15	34	GND
	2B2 16	33	2A2
	2B3 17	32	2A3
	V _{CC1} [18	31	V _{CC2}
	2B4 19	30	2A4
	2B5 20	29	2A5
	GND 21	28	GND
	2B6 22	27	2A6
	2B7 23	26	2A7
	2DIR 24	25	2 0E
l		SW00198	

QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

SYMBOL	PARAMETER	CONDITION	NS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay An to Bn; Bn to An	$V_{CC} = 2.5V, C_L = 30pF$ $V_{CC} = 3.3V, C_L = 50pF$	2.4	ns	
Cl	Input capacitance		4.0	pF	
C _{I/O}	Input/output capacitance				
6	Power dissipation experitones per huffer	Outputs enabled		27	pF
CPD	Power dissipation capacitance per buller	VI = GIND to VCC.	Outputs disabled	4	pF

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where: } f_{i} = \text{input frequency in MHz; } C_{L} = \text{output load capacitance in pF;}$ $f_{o} = \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V; } \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) = \text{sum of the outputs.}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	–40°C to +85°C	74ALVCH162245 DL	ACH162245 DL	SOT370-1
48-Pin Plastic TSSOP Type II	–40°C to +85°C	74ALVCH162245 DGG	ACH162245 DGG	SOT362-1

74ALVCH162245

RECOMMENDED OPERATING CONDITIONS

SYMPOL	DADAMETED	CONDITIONS	LIM	LINIT	
STWBOL	PARAMETER CONDITIONS		MIN	MAX	UNIT
	DC supply voltage 2.5V range (for max. speed performance @ 30 pF output load)		2.3	2.7	V
VCC	DC supply voltage 3.3V range (for max. speed performance @ 50 pF output load)		3.0	3.6	V
VI	DC Input voltage range		0	V _{CC}	V
Vo	DC output voltage range		0	V _{CC}	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 2.3 \text{ to } 3.0 \text{V}$ $V_{CC} = 3.0 \text{ to } 3.6 \text{V}$	0 0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V ₁ <0	-50	mA
V.		For data inputs with bus hold ¹	–0.5 to V _{CC} +0.5	V
v1	De input voltage	For control pins ¹	-0.5 to +4.6	v
I _{ОК}	DC output diode current	$V_O > V_{CC} \text{ or } V_O < 0$	±50	mA
Vo	DC output voltage	Note 1	–0.5 to V _{CC} +0.5	V
Ι _Ο	DC output source or sink current	$V_{O} = 0$ to V_{CC}	±50	mA
I _{GND} , I _{CC}	DC V_{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package –plastic medium-shrink (SSOP) –plastic thin-medium-shrink (TSSOP)	For temperature range: -40 to +125 °C above +55°C derate linearly with 11.3 mW/K above +55°C derate linearly with 8 mW/K	850 600	mW

NOTE:

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS	Temp :	Temp = -40°C to +85°C		
			MIN	TYP ¹	MAX	1
		V _{CC} = 2.3 to 2.7V	1.7	1.2		
VIH	HIGH level input voltage	V _{CC} = 2.7 to 3.6V	2.0	1.5		1 ×
N/		V _{CC} = 2.3 to 2.7V		1.2	0.7	
VIL	LOw level input voltage	V _{CC} = 2.7 to 3.6V		1.5	0.8	1 ×
		V_{CC} = 2.3 to 3.6V; V_I = V_{IH} or V_{IL} ; I_O = -100 μ A	V _{CC} -0.2	V _{CC}		
		V_{CC} = 2.3V; V_I = V_{IH} or V_{IL} ; I_O = -4mA	V _{CC} -0.4	V _{CC} -0.11		1
		V_{CC} = 2.3V; V_I = V_{IH} or V_{IL} ; I_O = -6mA	V _{CC} -0.6	V _{CC} -0.17		1
V _{OH}	HIGH level output voltage	V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = -4mA	V _{CC} -0.5	V _{CC} -0.09		V
		V_{CC} = 2.7V; V_{I} = V_{IH} or V_{IL} ; I_{O} = -8mA	V _{CC} -0.7	V _{CC} -0.19		1
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -6mA$	V _{CC} -0.6	V _{CC} -0.13		1
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -1.0	V _{CC} -0.27		1
		V_{CC} = 2.3 to 3.6V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		GND	0.20	
	LOW level output voltage	V_{CC} = 2.3V; V_I = V_{IH} or V_{IL} ; I_O = 4mA		0.07	0.40	1
		$V_{CC} = 2.3V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 6mA$		0.11	0.55	1
V _{OL}		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 4mA$		0.06	0.40	V
		V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = 8mA		0.13	0.60	1
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 6mA$		0.09	0.55	1
		V_{CC} = 3.0V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 12mA		0.19	0.80	1
lı I	Input leakage current per data pin with bus hold	$V_{CC} = 2.3 \text{ to } 3.6 \text{V};$ $V_I = V_{CC} \text{ or GND}$		0.1	5	μA
I _{OZ}	3-State output OFF-state current	V_{CC} = 2.3 to 3.6V; V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND		0.1	10	μA
I _{CC}	Quiescent supply current	V_{CC} = 2.3 to 3.6V; V_{I} = V_{CC} or GND; I_{O} = 0		0.2	40	μΑ
ΔI_{CC}	Additional quiescent supply current given per data I/O pin with bus hold	$V_{CC} = 2.3V$ to 3.6V; $V_I = V_{CC} - 0.6V$; $I_O = 0$		150	750	μA
1 2		$V_{CC} = 2.3V; V_I = 0.7V$	45	-		
'BHL ⁻	Bus hold LOW sustaining current	$V_{CC} = 3.0V; V_I = 0.8V$	75	150		μΑ
1 2		$V_{CC} = 2.3V; V_1 = 1.7V$	-45			
^I BHH ²	bus noid HIGH sustaining current	$V_{CC} = 3.0V; V_1 = 2.0V$	-75	-175		μΑ
I _{BHLO} 2	Bus hold LOW overdrive current	V _{CC} = 3.6V	500			μA
I _{BHHO} ²	Bus hold HIGH overdrive current	$V_{CC} = 3.6V$	-500			μΑ

NOTES:

1. All typical values are at $T_{amb} = 25^{\circ}C$. 2. Valid for data inputs of bus hold parts.

74ALVCH162245

74ALVCH162245

AC CHARACTERISTICS FOR V_{CC} = 2.3V TO 2.7V RANGE

GND = 0V; $t_r = t_f \le 2.0ns$; $C_L = 30pF$

			LIMITS			
SYMBOL	PARAMETER	WAVEFORM V _{CC} = 2.3 to 2.7V				UNIT
			MIN	TYP ^{1, 2}	MAX	
t _{PHL} /t _{PLH}	Propagation delay nAn to nBn; nBn to nAn	1, 3	1.0	2.5	4.9	ns
t _{PZH} /t _{PZL}	3-State output enable time nOE to nAn; nOE to nBn	2, 3	1.0	2.9	6.8	ns
t _{PHZ} /t _{PLZ}	3-State output disable time nOE to nAn; nOE to nBn	2, 3	1.0	3.0	6.3	ns

NOTES:

1. All typical values are measured $T_{amb} = 25^{\circ}C$.

2. Typical value is measured at V_{CC} = 2.5V

AC CHARACTERISTICS FOR V_{CC} = 3.0V TO 3.6V RANGE AND V_{CC} = 2.7V

GND = 0V; $t_r = t_f \le 2.5ns$; $C_L = 50pF$

			LIMITS						
SYMBOL	PARAMETER	WAVEFORM	V_{CC} = 3.3 \pm 0.3V			V _{CC} = 2.7V			UNIT
			MIN	TYP ^{1, 2}	MAX	MIN	TYP ¹	MAX	
t _{PHL} /t _{PLH}	Propagation delay nAn to nBn; nBn to nAn	1, 3	1.0	2.4	4.2	1.0	2.7	4.7	ns
t _{PZH} /t _{PZL}	3-State output enable time nOE to nAn; nOE to nBn	2, 3	1.0	3.0	5.6	1.0	3.9	6.7	ns
t _{PHZ} /t _{PLZ}	3-State output disable time nOE to nAn; nOE to nBn	2, 3	1.0	2.6	5.5	1.0	2.9	5.7	ns

NOTES:

1. All typical values are measured $T_{amb} = 25^{\circ}C$.

2. Typical value is measured at $V_{CC} = 3.3V$

74ALVCH162245

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE	REFERENCES			EUROPEAN		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	
SOT362-1		MO-153ED				